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Abstract

In this paper, we present a fast algorithm for rapid calculation of the potential fields in three dimensions. This

method arises from an observation that potential evaluation using the multipole to local expansion translation operator

can be expressed as a series discrete convolutions of the multipole moments with their associated spherical harmonics

functions. The high efficiency of the algorithm is primarily due to the use of FFT algorithms to evaluate the numerous

discrete convolutions. We refer to it as the Fast Fourier Transform on Multipoles (FFTM) method. It is demonstrated

that FFTM is an accurate method. It is significantly more accurate than FMM for a given order of expansion. It is also

shown that the algorithm has computational complexity of OðNaÞ, where a ranges from 1.0 to 1.3.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The evaluation of Coulombic and gravitational interactions in large-scale ensembles of particles is
generally expressed as [7,12–15]

UðxjÞ ¼
XN

i¼1; i6¼j

qi
kxj � xik

for j ¼ 1; . . . ;N ; ð1Þ

where UðxjÞ corresponds to the potential at the field point xj due to the effects from qi point sources at

position xi, and k � k denotes the Euclidean norm.
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Eq. (1) is known to be closely related to many physical problems, such as the evolution of large-scale

gravitational systems in astrophysics [1,3,12–14], capacitance calculation of multi-conductors problems in

electrical engineering [20–23], incompressible fluid dynamics [2], and molecular dynamics simulations in

chemistry [4,8,18,19]. However, evaluating the expression directly requires OðN 2Þ operations, which be-

comes prohibitively large when N exceeds several thousands.

To improve the computation, numerous fast algorithms have been developed, and the Fast Multipole

Method (FMM) is definitely one of the most widely implemented algorithms. FMM was developed by

Greengard and Rohklin [12–14] for N -body simulations. Subsequently, Nabor and White [20,21] im-
plemented it in electrostatic analysis, mainly to calculate the capacitance of three-dimensional struc-

tures. The efficiency of FMM comes from the effective usage of the multipole and local expansions,

which are employed repeatedly in a hierarchical manner through a series of translation operations.

Greengard and Rokhlin [15] then developed a new version of FMM, by using the diagonal forms of

translation operators with exponential expansions, which reduced the Oðp4Þ scaling factor to Oðp2Þ,
where p is the order of expansions. Further improvement on the FMM was made by Cheng et al. [7]

with the ‘‘compressed’’ version of the translation operators. On the other hand, Elliott and Board [9]

reduced the scaling factor to Oðp2 log pÞ by performing Fast Fourier Transforms (FFT) on the trans-
lation operators, and a special technique was proposed to deal with the numerical instability for large

values of p.
Alternatively, using multipole expansion alone can give rise to a fast algorithm, which is generally known

as the tree algorithm [1,3]. The basic idea is similar to the FMM algorithm, except that the local expansion

is not used. Instead, the multipole expansion is evaluated directly at the potential point. Hence, to a certain

extent, the FMM can be seen as an enhancement of the tree algorithm.

Another group of fast methods utilizes FFT to accelerate the potential evaluation. They include the

particle-mesh-based approach [8,17–19], the precorrected-FFT method [23] and its variant [6]. Generally,
these methods approximate a given distribution of charges by an equivalent system of smoothed charge

distribution that falls on a regular grid. Subsequently, the potential at the grid points due to the smoothed

charge distribution is derived by discrete convolution, which is done rapidly using FFT algorithms.

However, local corrections are required for the ‘‘near’’ charge evaluations because these potential contri-

butions are not accurately represented by the grid charges.

In this paper, we present an alternate fast algorithm that can also perform the potential evaluation

rapidly, specifically for electrostatics analysis of charge particle systems. This method arises from an

important observation that potential evaluation using multipole to local expansion translation operator
can be expressed as series of discrete convolutions of the multipole moments with their associated

spherical harmonics functions, where FFT algorithms can be employed to evaluate the discrete convo-

lutions rapidly. We refer to this method as the Fast Fourier Transform on Multipoles (FFTM) method.

This is an improvement on an older version of FFTM in [22], which only employed the discrete con-

volution on the multipole expansion. In the previous method, only the potentials at the cell centers were

computed. The potentials at other desire locations (such as specific particle locations or nodal positions)

were obtained by interpolating with the cell center potentials. However, the interpolation technique

adopted by the method had imposed a limitation on the order of accuracy attainable by the previous
method (to approximately 2–3 digit accuracy). This current version of FFTM resolves this accuracy

problem, without loss in its high efficiency, by employing the discrete convolutions to the multipole-to-

local expansion translation operator. In this case, the potentials gradients (up to the p order) are eval-

uated at the cells centers, and the potentials at other desired locations are obtained by using the local

expansion.

It is remarked here that FFTM differs from the FMM as it forgoes the complicated hierarchical

procedure in the FMM, which is the primary feature that provides the efficiency of the FMM algorithm.

Instead, the speed up in FFTM comes from the use of FFT algorithms to evaluate the numerous discrete
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convolutions. On the other hand, this approach differs from the other FFT-based methods [6,8,17–19,23]

as the charges and potential distributions are approximated by multipole moments and local coefficients,

respectively, instead of grid charges and grid potentials as in precorrected-FFT method [23]. This choice

of charge sources and potential fields representations makes the ‘‘local correction’’ procedure extremely

simple and does not incur extra computational cost, which may otherwise be quite expensive (see for

example [23]). This point will be illustrated more clearly in Section 3.1C. The current method differs from

the FFT approach proposed by Elliott and Board [9] in that the convolution variables in their method

were the indices of the translation operators, that is j, k, n, m of (10), whereas in our method, they are the
spatial coordinates of the source and field points, that is (q; a; b) in (10).

The present FFTM is similar to the approach implemented by Shimada et al. [24,25] for the bio-

molecular simulations. They called it the particle–particle and particle–mesh/multipole expansion (PPPM/

MPE) method. In the paper [25], they compared the PPPM/MPE and the FMM, and suggested that the

FMM was a more favorable approach then, despite that PPPM/MPE showed better efficiency than

FMM in their numerical examples. One of the primary reasons was due the excessive memory re-

quirements for storing the numerous FFT terms of the response functions, which were enlarged by eight

times due to the periodic requirements by FFT. However in FFTM, we resolved this memory storage
issue partially by exploiting the symmetry relations of the spherical harmonics functions. By doing so, we

eliminated the need to increase the size of the response functions by eight times and hence improved the

efficiency of the method in storage memory usage. Furthermore, significant improvement in accuracy

gained by forgoing the hierarchical approach was not thoroughly investigated and this is addressed in

this paper.

The paper is organized as follows. Section 2 summarizes the mathematical functions required for the

implementation of FFTM. In Section 3, the FFTM algorithm is described in detail. Section 4 presents some

numerical examples to demonstrate the accuracy and efficiency of the method, and finally, a conclusion is
given in Section 5.
2. Mathematical preliminaries

In this section, we present the mathematical formulas that are required in the implementation of the

FFTM algorithm. These include the multipole and local expansions, and the multipole to local expansion

translation operator. Detailed discussion on these formulas can be found in [10,13,15].

2.1. Multipole expansion

Theorem 2.1. Suppose there are Nq charges of strength qi that are located at positions xi ¼ ðqi; ai; biÞ for

i ¼ 1; . . . ;Nq, and are bounded within a sphere Sa of radius a centred at the origin, that is jqij < a. Then, for
any point y ¼ ðr; h;/Þ 2 R3 with r > a, the potential generated by these charges is given by

UðyÞ ¼
X1
n¼0

Xn
m¼�n

Mm
n

Y m
n ðh;/Þ
rnþ1

; ð2Þ

where Mm
n is the multipole moment, which is defined as

Mm
n ¼

XNq

i¼1

qiqn
i Y

�m
n ðai; biÞ; ð3Þ

and Y m
n ðh;/Þ is the spherical harmonics of degree n and order m, and it is given by
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Y m
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
P jmj
n ðcos hÞeim/; ð4Þ

where Pm
n ðcos hÞ is the associated Legendre function of the first kind with degree n and order m, which is

defined only when n is a non-negative integer, and for �n6m6 n.

Eq. (3) is the linear operator that converts a system of charge particles that is arbitrarily distributed

within a sphere centred at the origin into its multipole momentsMm
n defined at the origin. The error incurred

by truncating the multipole expansion in (2) to an order of p is bounded by

UðyÞ
����� �

Xp
n¼0

Xn
m¼�n

Mm
n

Y m
n ðh;/Þ
rnþ1

�����6
PNq

i¼1 jqij
r � a

 !
a
r

� �pþ1

: ð5Þ
2.2. Local expansion

Theorem 2.2. Suppose there are Nq charges of strength qi that are located at positions xi ¼ ðqi; ai; biÞ for

i ¼ 1; . . . ;Nq, and fall outside a sphere Sa of radius a centred at the origin, that is jqij > a. Then for any point

y ¼ ðr; h;/Þ 2 Sa, the potential generated by these charges is given by

UðyÞ ¼
X1
j¼0

Xj
k¼�j

Lk
j Y

k
j ðh;/Þrj; ð6Þ

where Lk
j is the local expansion coefficient, which is defined as

Lk
j ¼

XNq

i¼1

qi
Y �k
j ðai; biÞ
qjþ1
i

: ð7Þ

The physical interpretations of local expansion coefficients correspond to the potential and its gradients

evaluated at the origin, which are generated by the Nq charge particles outside Sa. Eq. (6) is the linear

operator that converts the local expansion coefficients defined at the origin into the potential at any ar-

bitrary point y ¼ ðr; h;/Þ within Sa. Truncating the local expansion in (6) to an order of p incurs an error

that is bounded by

UðyÞ
����� �

Xp
j¼0

Xj
k¼�j

Lk
jY

k
j ðh;/Þrj

�����6
PNq

i¼1 jqij
a� r

 !
r
a

� �pþ1

: ð8Þ
2.3. Conversion of multipole expansion into local expansion

Theorem 2.3. Suppose there are k charges of strength qi that fall within a sphere SX of radius a centred at the

position X ¼ ðq; a; bÞ, and that q > ðcþ 1Þa with c > 1. Then, the corresponding multipole expansion con-

verges inside a sphere SO of radius a centred at the origin. For any point y ¼ ðr; h;/Þ 2 SO, the potential

generated by these charges is given by the local expansion

UðyÞ ¼
X1
j¼0

Xj
k¼�j

Lk
j Y

k
j ðh;/Þrj; ð9Þ



248 E.T. Ong et al. / Journal of Computational Physics 192 (2003) 244–261
where
Lk
j ¼

X1
n¼0

Xn
m¼�n

ijk�mj�jkj�jmjAm
n A

k
j Y

m�k
jþn ða; bÞ

ð�1ÞnAm�k
jþn qjþnþ1

Mm
n ; ð10Þ

with

Am
n ¼ ð�1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� mÞ!ðnþ mÞ!
p and i ¼

ffiffiffiffiffiffiffi
�1

p
:

Eq. (10) is the linear operator that converts the multipole moments Mm
n defined at the point X ¼ ðq; a; bÞ

into the local expansion coefficients Lk
j defined at the origin. However, in this present approach, we are

required to evaluate the potential and its potential gradients at some distant point X ¼ ðq; a; bÞ due to

multipole sources at the origin. This is required by the FFT algorithms which are used to compute the

discrete convolutions. Now, by substituting a ¼ p� a0 and b ¼ pþ b0 into Y m�k
jþn ða; bÞ of (10), the following

formula

Lk
j ¼

X1
n¼0

Xn
m¼�n

ijk�mj�jkj�jmjAm
n A

k
j Y

m�k
jþn ða0; b0Þ

ð�1ÞjAm�k
jþn qjþnþ1

Mm
n ; ð11Þ

where the only difference between (10) and (11) is the exponent of the ()1) term. The reason for using this

definition for the translation operator will be more apparent in Section 3.1. The error bound for truncation

of (10) or (11) to order p is given by

UðyÞ
����� �

Xp
j¼0

Xj
k¼�j

Lk
jY

k
j ðh;/Þrj

�����6
Pk

i¼1 jqij
ca� a

 !
1

c

� �pþ1

: ð12Þ
Remark 2.1. It is observed from the error bounds given in (5), (8) and (12) that the accuracy of the
truncated multipole and local expansions improves when: (i) one uses higher-order expansion p and/or (ii)

the separation distance ratio, a=r for multipole expansion, r=a for local expansion and 1=c for multipole to

local expansion translation operator, decreases.
3. Fast Fourier transform on multipole

As mentioned in Section 1, the main difference between the present method and the FMM is that it
replaces the hierarchical procedure of translating multipole to local expansions in FMM, by discrete

convolutions that are evaluated rapidly using FFT algorithms. Nevertheless, some resemblance between the

FFTM and the FMM can be observed.

3.1. FFTM algorithm

This algorithm requires a number of translation operators that are denoted by three-letter abbreviations.

The letter notations have the following meanings: M, multipole moments; Q, charge; P, potential; and 2,
To. Basically, this algorithm comprises of the following four steps:

A. Discretizing the spatial domain into many smaller cells.

B. Converting the cluster of distributed charges within each cell to multipole moments.
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C. Evaluating the local expansion coefficients at cell centers due to the multipole moments. This process is

regarded as evaluating a series of discrete convolutions that are accelerated by FFT algorithms.

D. Computing the potentials at the charge particle locations using the local expansions, which only ac-

count for the ‘‘distant’’ charge contributions. The potential contributions from the ‘‘near’’ charges
are added directly to the charge particle locations.

This process is summarized in Fig. 1. The following sections elaborate on each of the steps.

A. Spatial discretization

This step divides the problem domain into many smaller cells, and allocates the particles among them.

The aim is to identify closely packed particles that can be approximated by simpler representations, such as

multipole moments. It also helps to separate the ‘‘near’’ particles and the ‘‘distant’’ ones. The dimensions of

the initial volume that bound the problem domain are chosen to satisfy the ratio required by FFT, which is
usually in powers of two. Otherwise, dummy layers of empty cells have to be added to meet the require-

ment. This process is commonly known as zero padding. Nowadays, it is also possible to perform FFT on

any arbitrary size of data, like using the freeware FFTW (Fastest Fourier Transform in the West), provided

by Frigo and Johnson [11]. This improves the efficiency FFTM by minimizing the number of zero padding,

which often increases the FFT size rapidly and unnecessarily.

Remark 3.1. FFTW is a comprehensive collection of fast C routines for computing Discrete Fourier

Transform (DFT) in one or more dimensions, of both real and complex data, and more importantly of an

arbitrary input size. The FFTW works most efficiently for arrays whose size can be factored into small

primes, i.e., N ¼ 2a3b5c, where a, b and c are integers.
A B

M M M M M M M M
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M M M M M M M M
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L L L L L L L L

L L L L L L L L

L L L L L L L L

L L L L L L L L

L L L L L L L L
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M M M M M M M M

M M M M M M M M

M M M M M

M M M L M M

M M M M M
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Fig. 1. Two-dimensional pictorial representation of FFTM algorithm. Step A: Division of problem domain into many smaller cells.

Step B: Computation of multipole moments M for all cells. Step C: Evaluation of local expansion coefficients L at cell centers by

discrete convolutions via FFT. Step D: For a given cell, compute the potentials at particles locations using L, which accounts for effects

of the charge particles that are considered ‘‘distant’’ from the cell concerned, and also adding the ‘‘near’’ charge contributions (particles

within the neighboring cells of the cell concerned) directly onto particle locations.
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B. Converting clusters of distributed charge particles into multipole moments

The operator that performs this task is given in (3), which is denoted by Q2M translation operator. It

converts the clusters of distributed charge particles in the cells to an equivalent set of point sources defined

at the centre of the cells. Applying Q2M to all the cells would transform the original system of charge

particles to one that contains only regularly spaced point sources, as depicted in Fig. 1 after step B.
C. Evaluating of local expansion coefficients due to multipole moments

This step evaluates the local expansion coefficients at the field points, which coincide with the cell
centers, due to the multipole moments in all the cells. The regular spacing of the cell centers enables the

calculations to be done rapidly through discrete convolutions using FFT algorithms. This comes from the

following discrete convolution theorem [26].

Theorem 3.1. Suppose fuig and fvig are sequences of period N with discrete Fourier transforms given by fUkg
and fVkg, respectively. Then the discrete Fourier transform of the cyclic discrete convolution fu� vg is fUkVkg,
where u� v ¼

PN�1

j¼0 ujvj�i for i ¼ 0; . . . ;N � 1.

Mathematically, the multipole to local expansion translation formula, as given in (11), can be written as

a series of three-dimensional discrete convolutions

Lk
j ðx; y; zÞ �

Xp
n¼0

Xn
m¼�n

X
x0

X
y0

X
z0

Mm
n ðx0; y 0; z0ÞT

m;k
j;n ðx

2
4 � x0; y � y 0; z� z0Þ

3
5; ð13Þ

where

Tm;k
j;n ¼

ijk�mj�jkj�jmjAm
n A

k
j Y

m�k
jþn

ð�1ÞjAm�k
jþn qjþnþ1

ð14Þ

is the response function that relates the multipole moment Mm
n and the local expansion coefficients Lk

j , and

the indices (x, y, z), and ðx0; y0; z0Þ denote the discrete locations of the field point and multipole moment,

respectively. The discrete convolution in the square bracket of (13), in accordance to the discrete convo-

lution theorem, can be obtained by taking the inverse Fourier transform of f ~MMm
n � ~TTm;k

j;n g, where ~MMm
n and ~TTm;k

j;n

are the discrete Fourier transforms of Mm
n and T m;k

j;n , respectively, and * denotes the element-wise complex

multiplication operator.

Remark 3.2. Suppose the total number of cells used to discretize the spatial domain in step A is

Nx � Ny � Nz. To include the effects of all the multipole moments Mm
n in the Nx � Ny � Nz cells, the response

functions Tm;k
j;n have to be defined for the range (�Ni;Ni) for i ¼ x; y; z. In other words, the size of Tm;k

j;n is

2Nx � 2Ny � 2Nz, and the functions are evaluated in a wrap-around order. The size for Mm
n is also increased

to 2Nx � 2Ny � 2Nz by zero padding [5]. Hence, the actual size of the discrete convolutions is

8� Nx � Ny � Nz.

For a given order of expansion p, there are Oðp2Þ local expansion coefficients, and each coefficient re-

quires evaluating Oðp2Þ discrete convolutions,. Hence, the total number of discrete convolutions is Oðp4Þ. It
is well known that this Oðp4Þ scaling factor has limited the practical implementation of the original FMM

[12–14,20,21] for high order of accuracy applications. However, its impact is expected to be less severe on

FFTM (at least up to 6-digits accuracy). This is because the FFTM requires a significantly lower order of

expansion to achieve a desire order of accuracy, as compared to FMM. For example, FFTM needs only

p ¼ 2 to achieve 3-digits accuracy, while FMM would probably require p ¼ 9 as given in [7,15]. The
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superior accuracy of FFTM over FMM will be explained in Section 3.2. Furthermore, it will be shown in

Section 3.3 that the number of FFTs required to evaluate the Oðp4Þ discrete convolutions scales like Oðp2Þ
only.

Definition 3.1. Two cells are considered as neighbour if they share at least one common vertex. Hence, a cell

has at most 27 nearest neighbours, including itself. We called this the first layer stencil of ‘‘near’’ neigh-

bours. The second layer stencil of ‘‘near’’ neighbours of a given cell includes all its nearest neighbours�
nearest neighbours, which gives a total of 125 cells. In general, the D layer stencil of ‘‘near’’ neighbours

would have at most ð2Dþ 1Þ3 neighbouring cells.

For a given cell, the effects of the multipole moments from its neighbours are often inaccurate. This is

evident from the multipole expansion error bound given in (5). To overcome this problem, one needs to

perform local correction, also referred to as precorrecting in the precorrect-FFT method [23]. Generally,

this correction process involves: (i) removing the inaccurate contributions from the ‘‘near’’ multipole

moments that are included when computing the discrete convolutions and (ii) replacing these erroneous
results by those computed exactly using (1). In FFTM, the first part can be easily achieved by setting the

response functions at its neighbouring cells to zero, that is,

Tm;k
j;n ðx� x0; y � y 0; z� z0Þ ¼ 0; for jx� x0j; jy � y 0j and jz� z0j6 1: ð15Þ

Using (15) naturally excludes the ‘‘near’’ multipole moment effects in the discrete convolution step. In

this case, the removal process is no longer necessary, since no error is incurred in the first place. The direct
interaction calculation in the second part of the process is included in the next step.

D. Evaluating the potentials at particles locations

With the local expansion coefficients for all the cells, the potentials at the particle locations can be easily

computed using the L2P translation operator. However, this only accounts for the ‘‘distant’’ charge con-

tributions, which include all the particle effects, except those that fall within the neighbouring cells. The

effects of the ‘‘near’’ charges are added to the particle locations by the direct interaction calculation given by

(1).
3.2. Accuracy of FFTM

3.2.1. Superior accuracy of FFTM over FMM

Suppose the number of cells used to discretize the spatial domain in FFTM is identical to that in FMM

at its finest level L, where L > 2. Then, for a given order of expansion p, FFTM is always more accurate

than FMM. This simple but important observation can be illustrated as follows.

The original problem as given in (1) can be rewritten as

UðxjÞ ¼
XNn

i¼1; i6¼j

qi
kxj � xik

þ
XNd

k¼1

qk
kxj � xkk

for j ¼ 1; . . . ;N ; ð16Þ

where the potential contributions to point xj from all the N charge particles are separated into the ‘‘near’’

(Nn particles) and ‘‘distant’’ (Nd particles) components, such that the set of particles Nn and Nd are mutually

exclusive, and satisfy Nn þ Nd ¼ N .
Both FMM and FFTM compute the ‘‘near’’ charge effects in exactly the same manner and hence this

part of the potential contribution is identical. As for the ‘‘distant’’ charge contributions, both approaches

use the multipole and local expansions to approximate their effects. However, the multipole to local
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Fig. 2. Multipole moments representations for: (a) FFTM and (b) FMM.

252 E.T. Ong et al. / Journal of Computational Physics 192 (2003) 244–261
expansion conversion is performed differently in the two methods and this significantly affects the accuracy

in calculating the ‘‘distant’’ charge contributions.

For simplicity, consider the two-dimensional case as depicted in Fig. 2. Suppose we want to determine

the local expansion coefficients of the cell L, due to all the multipole moments in other cells M , as depicted

in Fig. 2(a). The ‘‘direct’’ approach is to compute the entire cell-to-cell interactions directly, but this is

usually computationally too expensive.

FMM uses a number of translation operators to reduce this computational cost, which involves passing

multipole and local expansions in a hierarchical manner. This process results in multipole moment rep-
resentation that contains cells of different sizes from different levels, such as the one shown in Fig. 2(b). The

local expansion coefficients L is also composed of contributions from different levels, namely the coarse

level Lc and fine level Lf . One important consequence of this hierarchical process is that for a given order of

expansion p, the accuracy for converting multipole to local coefficients at different levels remains ap-

proximately the same, which is primarily determined by p.
On the other hand, FFTM performs the multipole to local expansion translation by casting it as a series

of discrete convolutions, as given in (13), which can be evaluated rapidly using FFT algorithms. In terms of

accuracy, the FFTM is identical to the ‘‘direct’’ approach, since the FFT is exact (up to machine precision
in computation). This means that the order of accuracy for different cells would vary, due to the differences

in the relative distant between the interacting cells given by the parameter 1=c in (12). Hence, it is this part

of the potential contribution in which the FFTM can produce significantly more accurate results than the

FMM.
3.2.2. Approximation in FFTM

As described above, the accuracy of the multipole approximations improves as the relative distance

between the interacting cells increases. This suggests that for a given desire accuracy e and expansion order
p�, there exist a threshold distance c�, such that the error incurred in the multipole approximation would be

less than the desire accuracy. Using the error bound in (12), this means that

K
1

c� � 1

� �
1

c�

� �p�þ1

< e ð17Þ

where K ¼ ð
Pk

i¼1 jqij=aÞ. In FFTM, we can only satisfy ð1=ðc� � 1ÞÞð1=c�Þp
�þ1

< OðeÞ, since K is rather

arbitrary. Now, we further categorize the ‘‘distant’’ cells into: (i) the ‘‘well-separated’’ cells for those cells

whose relative distant are greater than c� and (ii) the ‘‘moderately separated’’ which are the remaining

‘‘distant’’ cells. Using these new criteria of cells classification, the error E at a given evaluation potential

point can be approximated as
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Etotal ¼ aEnear þ bEmoderately separated þ cEwell separated

¼ bEmoderately separated þ cEwell separated ðsince Enear ¼ 0Þ; ð18Þ

where the E�s denote the average error of the different groups of cells, and a; b and c are the corresponding
weighs for the potential contribution, with aþ bþ c ¼ 1.

In FFTM, we would want c to be significantly larger than b, and this can be achieved by choosing the

appropriate p� value. We note that b and c depend on two quantities, namely: (i) the strength of the

multipole moments, which is strongly dependent on the relative distance r between the interacting cells and

(ii) the number of cells that belong to the respective groups. Although each of the ‘‘moderately separated’’

cells generally has a larger potential contribution than the ‘‘well separated’’ ones, it is also important to

note that there are usually significantly more cells in the ‘‘well separated’’ group than the former one.

Unfortunately, it is difficult to quantify b and c, since they depend on the p� value, and are likely to be
problem-dependent.

In contrast to the FMM, where p� is often chosen such that Emoderately separated < OðeÞ, we allow the error

in this component to be larger than OðeÞ in the FFTM. To appreciate this, suppose p� is chosen such that

b ¼ sc in (18), i.e.,

c sEmoderately separated

�
þ Ewell separated

�
< OðeÞ ) Emoderately separated <

1

s
OðeÞ since Ewell separated < OðeÞ:

ð19Þ

Eq. (19) suggests that we can allow an error of order ð1=sÞOðeÞ in Emoderately separated, and yet maintain an

overall accuracy of OðeÞ in the computed potential. In Section 4, it is shown heuristically that the p� value
for FFTM can be significant lower that required by FMM.
3.3. Algorithmic complexity analysis

This section gives an estimate of the computational time complexity of FFTM. There are two major

parts: (i) the cost to compute the ‘‘near’’ charge contributions directly via particle-to-particle interaction,

Cnear and (ii) the cost to compute the ‘‘distant’’ charge contribution, which is primarily dominated by the

cost of evaluating the discrete convolutions, Cdistant. For reasonably uniform distributions of charge par-
ticles, the cost can be approximated as

Cnear ¼ 27Ns and Cdistant ¼ 2Np2 þOðp4Þ 3 8
N
s

� �
log 8

N
s

� �	
þ 8

N
s

� �

; ð20Þ

where s is the average number of particles per cell. In Cnear, the constant of 27 corresponds to the maximum
possible number of neighbours for a given cell when the first layer stencil is used to define the ‘‘near’’ cells.

The first term of Cdistant is due to the formation of multipole moments (via Q2M), and evaluation of the

local expansions (via L2P) for all the cells, and the second term is the cost of evaluating the numerous

discrete convolutions, as given in (13). The terms in the square bracket is the cost for evaluating one discrete

convolution, which includes the Fourier transforms of Mm
n and Tm;k

j;n , the element-wise complex multipli-

cation of these transforms ~MMm
n and ~TTm;k

j;n , and finally an inverse FFT of f ~MMm
n � ~TTm;k

j;n g. The constant factor of 8
is due to the zero-padding required to eliminate the aliasing effects (see Remark 3.2).

However, the actual implementation of FFTM requires evaluating significantly lesser number of FFTs.
This is due to the sharing of the multipole moments Mm

n and response functions Tm;k
j;n . This point is more



=

L(k, j)

0,0
0,1
1,1
0,2
1,2
2,2

M(m,  n)

0,0
-1,1
0,1
1,1
-2,2
-1,2
0,2
1,2
2,2

T(m-k, j+n)

0,0 -1,1 0,1 1,1 -2,2 -1,2 0,2 1,2 2,2
0,1 -1,2 0,2 1,2 -2,3 -1,3 0,3 1,3 2,3
-1,1 -2,2 -1,2 0,2 -3,3 -2,3 -1,3 0,3 1,3
0,2 -1,3 0,3 1,3 -2,4 -1,4 0,4 1,4 2,4
-1,2 -2,3 -1,3 0,3 -3,4 -2,4 -1,4 0,4 1,4
-2,2 -3,3 -2,3 -1,3 -4,4 -3,4 -2,4 -1,4 0,4

Fig. 3. Discrete convolution matrix for second-order expansion, p ¼ 2.
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clearly illustrated in Fig. 3, which shows the discrete convolution matrix for a second-order expansion (see

(13)).

First, the local expansion coefficients are evaluated only for the non-negative values of the index k,
because the coefficients for the negative indices are the complex conjugates of the corresponding positive

ones, i.e., L�k
j ¼ ðLk

j Þ
�
. This means that the total number of discrete convolutions is reduced by approxi-

mately half. Then, it is noted that there are only Oðp2Þ and Oð4p2Þ distinct terms for Mm
n and Tm�k

jþn , re-

spectively. These functions can be evaluated once and used repeatedly in the various discrete convolutions
as required. Finally, due to the linearity property of the Fourier transform, the number of inverse FFT

required to derive the local expansion coefficients is also Oðp2Þ. Hence, a more reasonable estimate for the

cost of evaluating the discrete convolutions would be

Oð6p2Þ 8
N
s

� �
log 8

N
s

� �	 

þOðp4Þ 8

N
s

� �
; ð21Þ

where the first term corresponds to the cost of evaluating the FFT and the second term is that due to the

complex multiplication.

Remark 3.3. The cost of evaluating the FFT of Tm;k
j;n can be reduced significantly by exploiting the sym-

metric/anti-symmetric properties of the functions. The speedup comes from the use of fast sine/cosine

transform with anti-symmetric/symmetric condition [26]. More importantly, the memory requirement

storing these functions is significantly reduced, since we are required to store the response functions at the

first quadrant only.
4. Numerical examples

In this section, some numerical examples are used to study the performance of FFTM, in terms of its

accuracy and efficiency. Two examples are considered here, namely: (i) a system of charge particles that are

distributed randomly but uniformly within a unit cube and (ii) a system of charge particles that are dis-

tributed randomly on the surface of a sphere of unit radius. The particles are randomly given charges that

range from )0.5 to 0.5 (but not zero). These two examples are also used in [7]. For convenience, they are

referred to as the cube and sphere examples, hereafter. Note that the cube problem represents a homog-
enous problem, while the sphere problem is a sparse one since a large part of the domain does not contain

any particle. The numerical experiments are carried out using a SGI Octane workstation with a CPU clock

rate of 175 MHz and memory storage of 512 MB of RAM.
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4.1. Accuracy analysis of FFTM

Definition 4.1. In this study, the error in the FFTM approximation is defined in the L2 norm as

Error ¼
Pk

i¼1 UDirðxiÞ � UFFTMðxiÞj j2Pk
i¼1 UDirðxiÞj j2

 !1=2

; ð22Þ

where UDirðxiÞ and UFFTMðxiÞ denote the potentials computed using the direct calculation approach and the

FFTM, respectively. Note that only the first 100 particles potentials are evaluated, i.e., k ¼ 100 in (22), due

to the excessive computational times required by the direct approach. The CPU times for the direct ap-

proach are linearly extrapolated from this set of computations. All the calculations in this accuracy analysis

were performed in double precision.
As shown in Section 3.2.1, for a given order of expansion p and with identical cell discretization, FFTM

is more accurate than FMM. The following discussion aims to quantify these differences, in terms of their

error convergence behaviours with increasing p. However, we do not have access to FMM algorithms, and

hence its error convergence behaviours are approximated based on the error bound in (12). According to

(12), the error incurred in using M2L scales like Oð1=cÞpþ1
, and for FMM, 1=c is bounded by (0.2, 0.764).

This bound is obtained using the formula, c ¼ ðq=aÞ � 1, for the nearest and furthest interacting cells. Now,

consider the situation where all the 189 interactions cells have the average value of 1=c ¼
0:5 � ð0:2þ 0:764Þ ¼ 0:482. Hence, the error of FMM can be realistically be approximated by
Oð0:482pþ1Þ, which is denoted by FMM (estimate) in Figs. 4 and 5. Although this curve may not corre-

spond to the actual convergence of the FMM, where its placement in the figures can be problem-dependent,

it does predict the order of accuracy for the two examples quite accurately (see [7,15]). In Figs. 4 and 5, we
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Fig. 4. Convergence behavior of FFTM for cube example.



  

 
 
 

 

Fig. 5. Convergence behavior of FFTM for sphere example.
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plot the errors of the FFTM for the cube and sphere examples, respectively, for different number of par-

ticles N and cell discretization level L.
From Fig. 4, it is noted that all the FFTM curves behave in a similar manners, regardless of the problem

size N , and the level of discretization L. This indicates that the accuracy of FFTM for a generally ho-

mogenous problem, like FMM, is primarily determined by the order of expansion p. But, this is not entirely
true for the sphere example, where the accuracy for some of the cases can differ by more than one order of

magnitude for the same value of p. This behaviour is likely due to the sparse nature of the sphere example.

However, a more important observation here is that the FFTM curves converge more rapidly than the

FMM (estimate), thought less significant for the sphere example. Based on the gradients of the FFTM

curves in Figs. 4 and 5, we estimate the error of FFTM for homogenous and sparse problems to scale like
Oð0:3pþ5Þ and Oð0:35pþ5Þ, respectively, which are denoted by FFTM (estimate) in the figures. However, we

would like to emphasis that these error estimates do not necessarily represent all problems. The conver-

gence rate of the FFTM is more likely to be problem�s characteristics, such as the sparseness of the charge

particles.
4.2. Efficiency analysis of FFTM

In this study, we aim to establish the computational complexity of FFTM for 3- and 6-digit accuracy.

The calculations for the 3- and 6-digit accuracy were performed in single and double precision, respectively.

The cube and sphere examples were solved for problem sizes ranging from 20,000 to 1,000,000. The CPU

times (in seconds) for the cube example are tabulated in Tables 1 and 2, and that for the sphere example in
Tables 3 and 4. These tables are organized as follows:



Table 2

CPU times for cube example for 6-digit accuracy

N Nx � Ny � Nz P TFFTM TDIR Error

20,000 8�8�8 8 8.45 112 9.01E) 08

50,000 12�12�12 8 22.1 885 1.99E) 07

100,000 16�16�16 8 48.8 3510 1.53E) 07

200,000 20�20�20 8 106 14,140 8.36E) 07

500,000 30�30�30 8 305 87,700 2.97E) 07

1,000,000 32�32�32 8 562 350,800 1.59E) 07

Table 1

CPU times for cube example for 3-digit accuracy

N Nx � Ny � Nz P TFFTM TDIR Error

20,000 16� 16� 16 2 1.47 106 1.59E) 4

50,000 20� 20� 20 2 4.01 720 3.92E) 4

100,000 24� 24� 24 2 8.63 3110 4.18E) 4

200,000 30� 30� 30 2 18.0 12,460 9.85E) 4

500,000 48� 48� 48 2 47.5 77,900 4.68E) 4

1,000,000 54� 54� 54 2 99.2 311,500 2.20E) 4

Table 3

CPU times for sphere example for 3-digit accuracy

N Nx � Ny � Nz p TFFTM TDIR Error Sparcity

20,000 20� 20� 20 2 3.88 106 7.30E) 04 10.2

50,000 30� 30� 30 2 12.3 720 1.50) 04 7.16

100,000 40� 40� 40 2 31.7 3110 2.01E) 04 5.31

200,000 54� 54� 54 2 75.0 12,460 6.36E) 04 4.05

500,000 80� 80� 80 2 258 77,900 2.54E) 04 2.70

Table 4

CPU times for sphere example for 6-digit accuracy

N Nx � Ny � Nz p TFFTM TDIR Error Sparcity

20,000 10� 10� 10 8 15.4 112 4.49E) 07 24.2

50,000 12� 12� 12 8 52.7 885 3.35E) 07 18.5

100,000 16� 16� 16 8 132 3510 2.99E) 07 14.2

200,000 24� 24� 24 8 310 14,140 1.50E) 07 9.20

500,000 32� 32� 32 8 1080 87,700 5.86E) 07 7.11
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Column 1: Number of particles in the simulations, N .

Column 2: Number of cells used to discretize the spatial domain, Nx � Ny � Nz.

Column 3: Order of expansion used in the example, p.
Column 4: CPU times for FFTM in seconds, TFFTM.
Column 5: CPU times for Direct approach in seconds, TDIR.

Column 6: Errors in the computed potentials for FFTM using (22), Error.

Column 7: Sparcity of the cell discretization, Sparcity. It measures the percentage of the non-empty cells to

that defined in Column 2. This parameter only applies to the sphere example.
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The following observations can be seen from these tables. First, it is noted that the number of cells used

to discretize the spatial domain, i.e., Nx � Ny � Nz, increases with the problem sizes for a given order of

accuracy. This observation can be explained as follows.

The estimated complexity of FFTM in (20) indicates that the two cost components, namely Cnear and

Cdistant, have an inverse relationship via the parameter s, where s is the average number of particles per cell.

Reducing s leads to lesser number of particles in the direct interaction lists, causing a decrease in Cnear. But

this can only be achieved by increasing the number of cells, which inevitably increases the discrete con-

volution size, and hence Cdistant.
In general, as the problem size increases, it is natural to increase the number of cells in order to reduce

Cnear but at the same time ensure that Cdistant is not significantly increased. Hence, there exists an optimum

cell discretization in which FFTM is most efficient, but this is likely to be problem-dependent.

It is also noted that only Cdistant is dependent on the order of expansion p. As shown in Section 4.1, the

accuracy of FFTM is largely determined by the order of expansion p. This means that for higher-order

accuracy, Cdistant is likely to be the dominant component, which can only be kept low by using lesser number

of cells. Hence, the number of cells used for the 6-digit accuracy is always lesser than those used for the 3-

digit accuracy.
Fig. 6 gives a plot of the computation time against the problem size. Based on the gradients of the curves

in Fig. 6, the estimated computational complexities for the cube and sphere examples are OðN 1:09Þ and

OðN 1:31Þ, respectively.
From these two examples, it is seen that FFTM is less efficient for the sphere example due to the

sparseness of the problem. This is a common problem faced by the FFT-based approaches [6,8,17–

19,23]. However in FFTM, there is a simple technique that can be used to further reduce its compu-

tational cost.
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4.3. Truncating the influence region of the response functions

This technique relies on the fact that the size of the discrete convolutions depends on the number of cells

used to discretize the spatial domain Nx � Ny � Nz and the extent of influence of the response functions

Tm�k
jþn . Suppose the extent of influence of the response functions is truncated to Rx � Ry � Rz; where Ri 6Ni

for i ¼ x; y and z, then the size of the discrete convolutions is ðRx þ NxÞ � ðRy þ NyÞ � ðRz þ NzÞ. Note that

for all the examples done above, Ri ¼ Ni, which assumes that all the response function influences are sig-

nificant throughout the entire spatial domain. This results in an 8Nx � Ny � Nz size of discrete convolutions
(see Remark 3.2). However, if we reduce Ri to 0:5Ni, then the size of the discrete convolution becomes

3:375Nx � Ny � Nz, which means a reduction of the computational cost for evaluating the discrete convo-

lution by about half.

Now, truncating the influence region of the response functions is possible because the accuracy of the

multipole approximation depends on the separation distant between the interacting cells, which scales like

Oðð1=cÞpþ1Þ. For example, the FFTM requires a second-order expansion to achieve a 3-digit accuracy

(Error < 1:0E) 3). However, interacting cells that are separated with c ¼ 31:6 can readily achieve that

order of accuracy with only the first-order expansion. In other words, the effects of the second-order
multipole moments from these ‘‘well separated’’ cells are expected to be lesser than the desire order of

accuracy, and hence can reasonably be neglected.

Using this truncating technique, we recalculated some of the larger cube and sphere problems. The

results for the cube and sphere examples are tabulated in Tables 5 and 6, respectively. Columns 1, 3 and 4

represent the same quantities as in Tables 1 and 4. Column 2 defines the size of the numerous discrete

convolutions and the limits, p1 and p2, of the orders of expansions. Basically, it means that for p6 p1, the
response functions were not truncated, i.e., Ri ¼ Ni, whereas for p1 < p6 p2 the response functions were

truncated to Rx � Ry � Rz. Column 5 gives the speedup obtained by using this simple truncation technique
over the na€ııve approach (no truncation), that is, Speedup ¼ Toriginal=Ttruncated, where Ttruncated is the CPU time

using the truncated scheme and Toriginal is the corresponding CPU time in Tables 1–4. It is observed that this

truncation technique can give significant speedup for the high accuracy problems. Here, we also solve the

larger problems for 9-digits accuracy, and the CPU times are given in Table 7. In this case, the ‘‘near’’ cells
Table 6

CPU times for sphere example using the truncating technique

N Nx � Ny � Nzðp1Þ; Rx � Ry � Rzðp2Þ TFFTM Error Speedup

200,000 54� 54� 54 (1), 18� 18� 18 (2) 66.9 7.72E) 04 1.12

500,000 80� 80� 80 (1), 20� 20� 20 (2) 209 4.07E) 04 1.23

200,000 30� 30� 30 (4), 6� 6� 6 (8) 176 4.27E) 07 1.76

500,000 40� 40� 40 (4), 8� 8� 8 (8) 681 6.52E) 07 1.59

Table 5

CPU times for cube example using the truncating technique

N Nx � Ny � Nzðp1Þ; Rx � Ry � Rzðp2Þ TFFTM Error Speedup

500,000 48� 48� 48 (1), 16� 16� 16 (2) 41.0 6.52E) 04 1.16

1,000,000 60� 60� 60 (1), 20� 20� 20 (2) 84.6 3.90E) 04 1.17

500,000 30� 30� 30 (4), 10� 10� 10 (8) 172 4.03E) 07 1.77

1,000,000 32� 32� 32 (4), 8� 8� 8 (8) 357 2.58E) 07 1.57



Table 7

CPU times for 9-digit accuracy using the truncating technique

Example (N ) Nx � Ny � Nzðp1Þ; Rx � Ry � Rzðp2Þ TFFTM Error

Cube (500,000) 36� 36� 36 (6), 12� 12� 12 (9) 507 5.43E) 10

Cube (1,000,000) 40� 40� 40 (6), 8� 8� 8 (9) 1040 2.89E) 10

Sphere (200,000) 32� 32� 32 (6), 8� 8� 8 (9) 488 8.58E) 10

Sphere (500,000) 40� 40� 40 (6), 8� 8� 8 (9) 1740 1.77E) 10
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are defined by the second layer stencil (see Definition 3.1). The CPU times are found to be about three times

those of 6-digit accuracy in Tables 5 and 6.
5. Conclusion

In this paper, we present an alternate fast algorithm for rapid evaluation of potential fields in three

dimensions. We refer it to as the Fast Fourier Transform on Multipoles (FFTM) method. The speedup in

the algorithm is achieved by recognizing the discrete convolution form of the multipole to local expansion

translation operator, which can be rapidly evaluated using FFT algorithms.

It is demonstrated that FFTM is an accurate method. More importantly, it can be significantly more

accurate than FMM for the same order of expansion. This algorithm is exceptionally efficient for low order
of accuracy (3-digit accuracy) and for problems where the particle distribution is relatively homogenous.

Based on the numerical simulations, the algorithm is found to have computational complexity of OðNaÞ,
where a ranges from 1.0 to 1.3. We would like to emphasis that FFTM is simpler to implement than the

FMM, especially when it is compared to the new version of FMM [7,15].

One possible and useful extension of this algorithm is to apply it to solve the Helmholtz equation,

commonly encountered in computational acoustics. The corresponding multipole and local expansions are

well established, and the necessary translation operators are readily available. Furthermore, Gumerov and

Duraiswami [16] have recently derived recursive formulae for the computations of various translation
operators for the Helmholtz equation so that the use of complicated formula involving the Wigner-3j

symbols can be avoided. However, direct application of this method may only be suited for solving such

problems in the low to medium frequency regime. Very high-order expansions are needed for high fre-

quency problems and this may defeat the effectiveness of the FFTM.

Finally, it is noted that FFTM involves evaluating numerous discrete convolutions that are essentially

uncoupled. This gives a great potential for simple parallel implementation of the algorithm that can further

reduce the computation time for large-scale problems.
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